
HIT600 Hall-Substituting Current Transducer

HIT600 has a high gain and measurement accuracy in the full bandwidth range, due to the application of the multi-point zero-flux technology system and high-frequency ripple sensing channel on top of currently existing DC sensor technology.

The multi-point zero-flux technology system secures the high accuracy by utilizing the technology combination of exciting magnetic flux closed-loop control, self-excited magnetic flux gate and multi-closed-loop control that realizes the closed-loop control between excitation magnetic flux and AC/DC magnetic flux generated by primary current, while the high-frequency ripple sensing channel allows the sensor to have the high performance over the full bandwidth range.

Product photo

Key Technologies

- ♦ Excitation closed-loop control technology
- Self-excitation demagnetization technology
- Multi-point zero-flux technology
- ♦ Temperature control compensation technology
- ♦ Multi-range automatic switching technology

Features

- ♦ Insulated measurement between primary and secondary side
- Excellent linearity and accuracy
- ♦ Extremely low temperature drift
- ♦ Extremely low zero drift
- ♦ Broad bandwidth and short response time
- ♦ Strong anti-electromagnetic interference

♦ Rail Transit: EMU, Metro, Trolly car

♦ Ship: Electric driven ship

♦ Car: Electric car

Application Domain

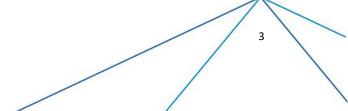
- ♦ Medical Equipment: Scanner, MRI
- ♦ Power industry: Converter, Inverter
- ♦ Renewable Energy: Photovoltaic, Wind energy
- ♦ Testing Instrument: Power analyzer, High-precision power supply
- ♦ Smart Power Grid: Power generation and battery monitoring, Medium low voltage substation
- ♦ Industry Control: Industrial motor drive, UPS, Welding, Robot, Hoist, Elevator, Ski lift

Electrical Performance

Parameter	Symbol	Measuring Conditions	Min	Тур	Max	Unit
Primary nominal direct current	I _{PN_DC}	_	_	±600	_	Adc
Primary nominal alternating current*	I _{PN}	_	_	424	_	Aac
Primary overload current	I PM	1 Minute	_	_	±720	Adc
Operating voltage	Vc	_	±14.2	±15	±15.8	V
Power consumption current	I _{PWR}	Rated primary current	±30	±230	±270	mA
Current ratio	K _N	Input : Output	3000:1	3000:1	3000:1	_
Rated output current	Isn	Rated primary current	_	±0.2	_	Α
Secondary burden resistance	R _M	_	0	2	5	Ω

^{*} refers to AC effective value

Accuracy Measurement


Parameter	Symbol	Measuring Conditions	Min	Тур	Max	Unit
Accuracy	X _G	Input direct current, full temperature range	_	_	500	ppm
Linearity	εL	Full scale	_	_	50	ppm
Temperature Coefficient	Tc	_	_	_	50	ppm/K
Zero offset current	lo	@25°C	_	_	±5	μΑ
Zero offset current	Іот	Full temperature range	_	_	±10	uA
Dynamic response time	t _r	di/dt=100A/us, rised to 90%IPN	_	1	_	us
Current change rate	di/dt	_	100	_	_	A/us
Frequency bandwidth (-3dB)	F	_	0	_	100	kHz

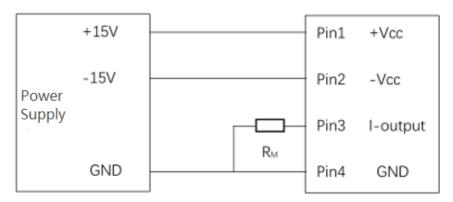
Safety Characteristics

Parameter	Symbol	Measuring Conditions	Value	Unit
Insulation voltage / Between primary and secondary sides	Vd	50Hz,1min	5	KV
Transient isolation withstand voltage / Between primary and secondary sides	Vw	50us	10	KV
Creepage distance / Between the primary and the outer shell	dCp	_	11	mm
Clearance distance / Between the primary and the outer shell	dCi	_	11	mm
Comparative tracking index	CTI	IEC-60112	275	V

General Characteristics

Parameter	Symbol	Measuring Condition	Min	Тур	Max	Unit
Ambient operating temperature	TA	_	-40	_	+80	°C
Storage temperature range	Ts	_	-55	_	+95	°C
Relative humidity	RH		20	_	80	%
Mass	М	_	_	320±5		g

Operating Status Instructions

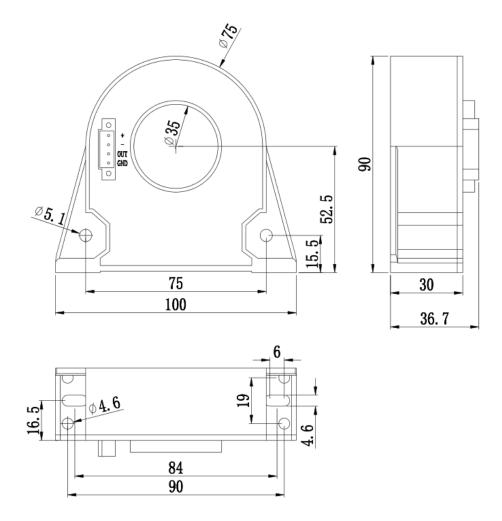

When power supply is normal and the primary current is within the specified measurement range, the secondary and primary currents are in proportional. If the primary current is over the specified measurement range, the transducers will be in overload mode, and the secondary and primary currents are not in proportional. The secondary and primary currents will return to be in proportional when the primary current recovers to the specified measurement range.

Connection system

1. Pin function definition of phoenix terminal

Pin No.	1 V+	2 V-	3 OUT	4 GND
Definition	+15V Supply	-15V Supply	I_Output	GND

HIT Series


Test instruction:

The primary current I_P can be obtained by measuring the test current I_s flowing through R_M or the voltage U_R across R_M :

$$I_P = K_N * I_S = K_N * (U_R/R_M)$$

Dimensions

Unit: mm

